Statistics - Definitions and Issues Deriving "Unbiased Symmetric" Metrics

Shaocai Yu*, Brian Eder*++, Robin Dennis*++, Shao-Hang Chu**, Stephen Schwartz***

*Atmospheric Sciences Modeling Division, NERL

** Office of Air Quality Planning and Standards

U.S. EPA, RTP, NC 27711.

***Brookhaven National Laboratory, Upton, NY 11973

++ On assignment from Air Resources Laboratory, NOAA

Introduction

- What are problems with commonly used metrics for model evaluation?
- Operational evaluation (EPA, 1991; Russell and Dennis, 2000)
 - > Determine a model's degree of acceptability and
 - > Usefulness for specific task
- Commonly used metrics (EPA, 1991)
 - **O** Difference between model and obs
 - **► Mean Bias** (B_{MB})
 - **► Mean Absolute Gross Error (E_{MAGE}), RMSE**
 - **2** Relative difference (normalized by Obs)
 - **► Mean Normalized Bias (B_{MNB})**
 - **► Mean Normalized Gross Error (E_{MNGE})**

See Table 1 for other metrics

Table 1. Commonly Used Metrics of Model Performance

Mathematical Expression	Range
$B_{MB} = \frac{1}{N} \sum_{i=1}^{N} (M_i - O_i) = \overline{M} - \overline{O}$	-O to +∞
$E_{MAGE} = \frac{1}{N} \sum_{i=1}^{N} M_i - O_i $	0 to +∞
$E_{RMSE} = \left[\frac{1}{N} \sum_{i=1}^{N} (M_i - O_i)^2\right]^{\frac{1}{2}}$	0 to +∞
$B_{MNB} = \frac{1}{N} \sum_{i=1}^{N} (\frac{M_i - O_i}{O_i}) \times 100\% = (\frac{1}{N} \sum_{i=1}^{M_i} -1) \times 100\%$	-100% to +∞%
$E_{MNGE} = \frac{1}{N} \sum_{i=1}^{N} (\frac{ M_i - O_i }{O_i}) \times 100\%$	0% to +∞%
$B_{NMB} = \frac{\sum_{i=1}^{N} (M_i - O_i)}{\sum_{i=1}^{N} O_i} \times 100\% = (\frac{\overline{M}}{\overline{O}} - 1) \times 100\%$	-100% to +∞%
$E_{NME} = \frac{\sum_{i=1}^{N} M_i - O_i }{\sum_{i=1}^{N} C} \times 100\% = \frac{E_{MAGE}}{\overline{O}} \times 100\%$	0% to +∞%
$\sum_{i=1}^{n} O_i$	0 10 10 10 10
$B_{FB} = \frac{1}{N} \sum_{i=1}^{N} \frac{(M_i - O_i)}{(M_i + O_i)}$	-2 to +2
$E_{FGE} = \frac{1}{N} \sum_{i=1}^{N} \frac{ M_i - O_i }{(M_i + O_i)}$	0 to 2
	$\begin{split} B_{MB} &= \frac{1}{N} \sum_{i=1}^{N} (M_{i} - O_{i}) = \overline{M} - \overline{O} \\ E_{MAGE} &= \frac{1}{N} \sum_{i=1}^{N} M_{i} - O_{i} \\ E_{RMSE} &= [\frac{1}{N} \sum_{i=1}^{N} (M_{i} - O_{i})^{2}]^{\frac{1}{2}} \\ B_{MNB} &= \frac{1}{N} \sum_{i=1}^{N} (\frac{M_{i} - O_{i}}{O_{i}}) \times 100\% = (\frac{1}{N} \sum_{i=1}^{M_{i}} - 1) \times 100\% \\ E_{MNGE} &= \frac{1}{N} \sum_{i=1}^{N} (\frac{ M_{i} - O_{i} }{O_{i}}) \times 100\% \\ B_{NMB} &= \frac{\sum_{i=1}^{N} (M_{i} - O_{i})}{\sum_{i=1}^{N} O_{i}} \times 100\% = (\frac{\overline{M}}{\overline{O}} - 1) \times 100\% \\ E_{NME} &= \frac{\sum_{i=1}^{N} M_{i} - O_{i} }{\sum_{i=1}^{N} O_{i}} \times 100\% = \frac{E_{MAGE}}{\overline{O}} \times 100\% \\ B_{FB} &= \frac{1}{N} \sum_{i=1}^{N} \frac{(M_{i} - O_{i})}{(M_{i} + O_{i})} \\ 2 \end{split}$

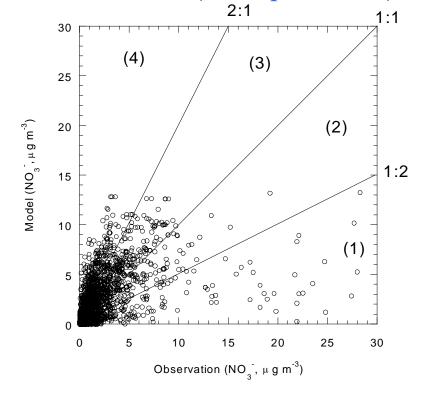
Introduction

- What are problems with commonly used metrics? (Continued)
- **Two problems** with metrics in Table 1
 - 1 Asymmetry for underprediction and overprediction
 - \triangleright Mean Bias: \overline{O} to $+\infty$
 - ➤ Mean Normalized Bias, NMB: -100% to +∞%
 - 2 Biased because of small numbers in the denominator
 - ➤ Mean Normalized Bias:

$$B_{MNB} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{M_i - O_i}{O_i} \right) \times 100\% = \frac{1}{N} \left(\sum \frac{M_i}{O_i} - 1 \right) \times 100\%$$

- Problem with Fractional Bias
 - **1** Against both Obs and Model
 - **2** Seriously compressed beyond ± 1 to ± 2
 - 3 Unclear meaning: 0.60?

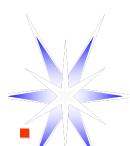
$$B_{FB} = \frac{1}{N} \sum_{i=1}^{N} \frac{(M_i - O_i)}{(M_i + O_i)}$$


Objective

OPropose new unbiased symmetric metrics on the basis of concept of factor

2 Test new metrics and other metrics, and apply the new metrics in the CMAQ evaluation

New Metrics Description


- Normalized mean Bias Factor (B_{NMBF}), Normalized mean error factor (E_{NMEF})
- Concept of Factor (symmetry)
 - > For Model>Obs (overprediction):
 - > For Model<Obs (underprediction):</pre>

$$Factor = \frac{Model}{Obs}$$

$$Factor = \frac{Obs}{Model}$$

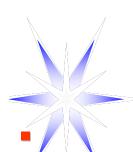
Symmetry: overprediction and underprediction are treated proportionately

New Metrics Description (Continued)

B_{NMBF} and **E**_{NMEF}

- - > For $\overline{M} < \overline{O}$ (underprediction):

Normalized Mean Bias Factor (
$$\mathbf{B}_{\text{NMBF}}$$
)
$$For \overline{M} \geq \overline{O} \text{ (overprediction):}$$


$$B_{NMBF} = (\frac{\sum_{i=1}^{N} M_i}{N_i} - 1) = (\frac{\overline{M}}{\overline{O}} - 1)$$

$$\sum_{i=1}^{N} O_i$$

$$B_{NMBF} = (1 - \frac{\sum_{i=1}^{N} O_i}{\sum_{i=1}^{N} M_i}) = (1 - \frac{\overline{O}}{M})$$

B_{NMBF}: symmetry, (Range) $-\infty$ to $+\infty$, + is overprediction – is underprediction

$$B_{NMBF} = \frac{\sum_{i=1}^{N} M_{i} - \sum_{i=1}^{N} O_{i}}{\left| \sum_{i=1}^{N} M_{i} - \sum_{i=1}^{N} O_{i} \right|} \left[\exp\left(\left| \ln \frac{\sum_{i=1}^{N} M_{i}}{\sum_{i=1}^{N} O_{i}} \right| \right) - 1 \right]$$

New Metrics Description (Continued)

B_{NMBF} and **E**_{NMEF}

- - > For $\overline{M} < \overline{O}$ (underprediction):

Normalized Mean Error Factor (
$$\mathbf{E}_{\text{NMEF}}$$
)
$$For \ \overline{M} \geq \overline{O} \ \text{(overprediction):} \qquad E_{NMEF} = \frac{\sum_{i=1}^{N} \left| M_i - O_i \right|}{\sum_{i=1}^{N} O_i} = \frac{E_{MAGE}}{\overline{O}}$$

$$E_{\scriptscriptstyle NMEF} = rac{\displaystyle\sum_{i=1}^{N} \left| M_i - O_i
ight|}{\displaystyle\sum_{i=1}^{N} M_i} = rac{E_{\scriptscriptstyle MAGE}}{M}$$

$$E_{NMEF} = \frac{\sum_{i=1}^{N} \left| M_{i} - O_{i} \right|}{\sum_{i=1}^{N} M_{i} - \sum_{i=1}^{N} O_{i}} \frac{\sum_{i=1}^{N} M_{i} - \sum_{i=1}^{N} O_{i}}{\left| \sum_{i=1}^{N} M_{i} - \sum_{i=1}^{N} O_{i} \right|} + 1 \right] / 2} \left(\sum_{i=1}^{N} M_{i} \right)^{\left[1 - \frac{\sum_{i=1}^{N} M_{i} - \sum_{i=1}^{N} O_{i}}{\left| \sum_{i=1}^{N} M_{i} - \sum_{i=1}^{N} O_{i} \right|} \right] / 2}$$

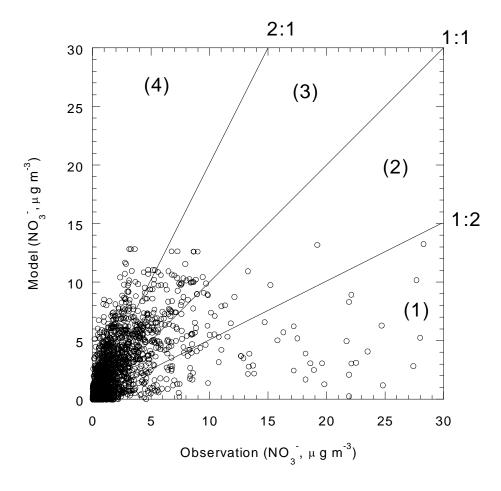
New Metrics Description (Continued)

Normalized Mean Bias Factor:

Unbiased: avoid undue influence of

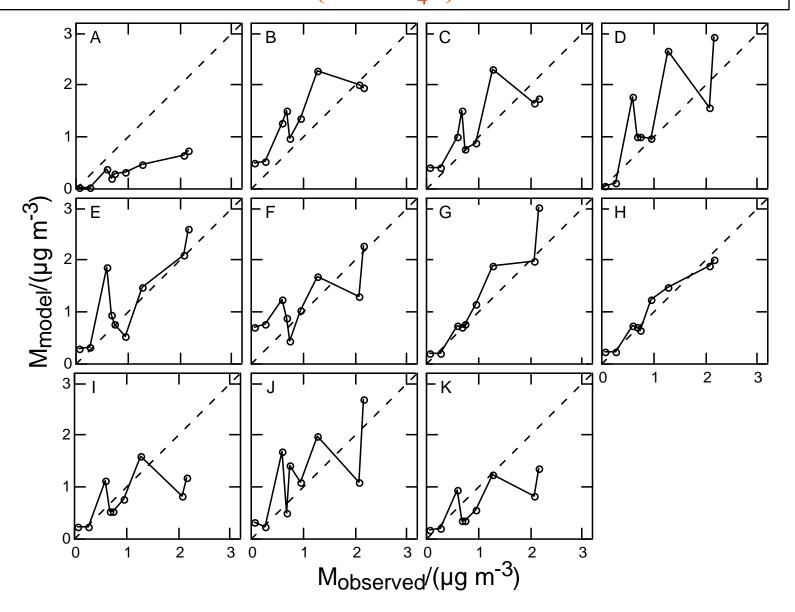
small numbers in denominator

> For $\overline{M} \ge \overline{O}$ (overprediction):

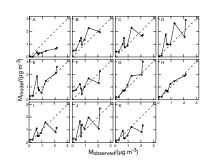

$$B_{NMBF} = \frac{\sum_{i=1}^{N} M_i}{\sum_{i=1}^{N} O_i} - 1 = \frac{\sum_{i=1}^{N} (M_i - O_i)}{\sum_{i=1}^{N} O_i} = \sum_{i=1}^{N} \left[\frac{O_i}{\sum_{i=1}^{N} O_i} \frac{(M_i - O_i)}{O_i} \right]$$
For $\overline{A_i} = \overline{C_i}$ (undersy ediction):

> For $\overline{M} < \overline{O}$ (underprediction):

$$B_{NMBF} = 1 - \frac{\sum_{i=1}^{N} O_i}{\sum_{i=1}^{N} M_i} = \frac{\sum_{i=1}^{N} (M_i - O_i)}{\sum_{i=1}^{N} M_i} = \sum_{i=1}^{N} \left[\frac{M_i}{\sum_{i=1}^{N} M_i} \frac{(M_i - O_i)}{M_i} \right]$$

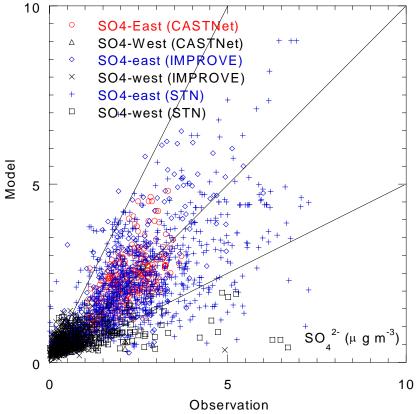

 B_{NMBF} : result of sum of indiv. factor bias with obs (or model) conc. as a weighting function

☐ Test of Metrics

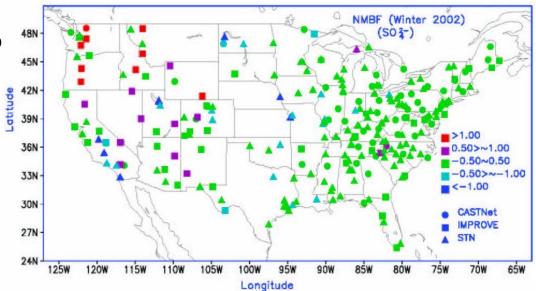

Combination*	1	2	3	4	1+2+3+4
\overline{O}	1.92	2.15	2.11	0.88	1.72
\overline{M}	0.42	1.58	2.94	2.88	1.88
N	903	450	663	755	2771
r	0.79	0.97	0.97	0.90	0.51
Difference					
$B_{ extit{MB}}$	-1.50	-0.57	0.83	1.99	0.16
E _{MAGE}	1.50	0.57	0.83	1.99	1.32
E _{RMSE}	4.25	1.07	1.29	2.70	2.91
Relative Differ	ence				
B _{MNB}	-0.82	-0.27	0.43	4.27	0.96
E _{MNGE}	0.82	0.27	0.43	4.27	1.58
B _{NMB}	-0.78	-0.26	0.39	2.25	0.09
E _{NME}	0.78	0.26	0.39	2.25	0.77
$B_{\it FB}$	-1.43	-0.33	0.33	1.12	-0.13
E _{FGE}	1.43	0.33	0.33	1.12	0.90
B _{NMBF}	-3.58	-0.36	0.39	2.25	0.09
E _{NMEF}	3.58	0.36	0.39	2.25	0.77

□Test of Metrics (Continued) :11 models from IPCC (2001) (nss-SO₄²⁻)

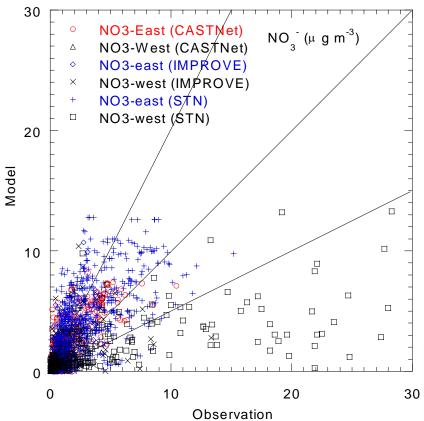
☐ Test of Metrics (Continued) :11 models for nss-SO₄²-


Models	Α	В	C	D	E	F	G	Н	1	J	K	L	M	N
\overline{O}	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
\overline{M}	0.35	1.37	1.19	1.34	1.22	1.16	1.19	1.02	0.79	1.23	0.67	0.00	1.96	+∞
N	9	9	9	9	9	9	9	9	9	9	9	9	9	9
r	0.959	0.840	0.737	0.777	0.839	0.769	0.953	0.977	0.609	0.692	0.767	0.00	1.00	0.00
Difference														
B_{MB}	-0.63	0.40	0.21	0.37	0.24	0.18	0.21	0.05	-0.19	0.25	-0.31	-0.98	+0.98	+∞
EMAGE	0.63	0.46	0.42	0.52	0.34	0.42	0.24	0.14	0.42	0.52	0.41	0.98	+0.98	+∞
E _{RMSE}	0.79	0.55	0.52	0.70	0.49	0.48	0.37	0.16	0.58	0.63	0.55	0.98	+0.98	+∞
Relative Difference	•													
B _{MNB}	-0.65	1.23	0.91	0.38	0.70	1.40	0.34	0.33	0.19	0.75	-0.06	-1.00	+1.00	+∞
E MNGE	0.65	1.26	1.01	0.60	0.80	1.58	0.39	0.39	0.59	0.94	0.52	1.00	+1.00	+∞
B _{NMB}	-0.64	0.41	0.22	0.38	0.25	0.18	0.21	0.05	-0.20	0.26	-0.32	-1.00	+1.00	+∞
E _{NME}	0.64	0.47	0.43	0.53	0.34	0.43	0.25	0.15	0.44	0.53	0.42	1.00	+1.00	+∞
B_{FB}	-1.00	0.53	0.37	0.16	0.30	0.35	0.22	0.16	-0.04	0.30	-0.24	-2.00	+0.67	+∞
E FGE	1.00	0.56	0.48	0.45	0.43	0.56	0.27	0.24	0.47	0.53	0.53	2.00	+0.67	+∞
B _{NMBF}	-1.80	0.41	0.22	0.38	0.25	0.18	0.21	0.05	-0.24	0.26	-0.46	_∞	+1.00	+∞
ENMEF	1.80	0.47	0.43	0.53	0.34	0.43	0.25	0.15	0.54	0.53	0.61	+∞	+1.00	+∞

- •Model H: best; Model A: worst
- •Models E, G, H: acceptable

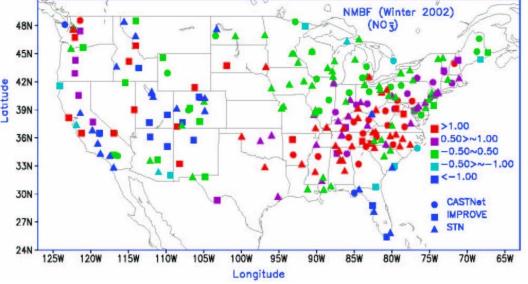

If criteria: $\pm 25\%$ (B_{NMBF}), 35% (E_{NMEF})

□ Application of new Metrics for CMAQ evaluation



Network	CASTNet	IMPROVE	STN
SO₄²⁻ (μg m ⁻³)			
Mean Model (\overline{M})	1.76	1.13	1.88
Mean OBS (\overline{O})	1.71	0.93	2.23
N	413	729	1149
r	0.841	0.860	0.670
B_{MB}	0.06	0.194	-0.344
E _{MAGE}	0.41	0.427	0.793
B_{NMBF}	0.03	0.22	-0.19
E _{NMEF}	0.24	0.46	0.42

Jan. 8 to Feb. 18, 2002



□ Application of new Metrics (Continued)

Network	CASTNet	IMPROVE	STN
NO₃ (μg m ⁻³)			
Mean Model (\overline{M})	2.19	0.904	3.38
Mean OBS (\overline{O})	1.38	0.683	3.35
N	4 15	689	1044
r	0.758	0.540	0.360
B_{MB}	0.811	0.221	0.033
EMAGE	1.11	0.676	2.428
B_{NMBF}	0.59	0.32	0.01
E _{NMEF}	0.80	0.99	0.72

Jan. 8 to Feb. 18, 2002

Conclusions

- Normalized mean bias factor and normalized mean error factor are proposed to quantify the relative departure between model and obs.
- The newly proposed metrics are:
 - > Symmetric: overprediction and underprediction are treated proportionately
 - ➤ Unbiased: avoid undue influence of small numbers in the denominator
- Tests show that the newly proposed metrics are useful, their meanings are clear and easy to explain.
- To represent the whole performance of the model:
 - ➤ Mean (model, obs), r, Number, difference (B_{MB}, E_{MAGE}), relative difference (B_{NMBF}, E_{NMEF})
 - > Values of relative differences depend on the units of model prediction and obs !!!!

